Induced p21Cip1 in premature baboons with CLD: implications for alveolar hypoplasia.
نویسندگان
چکیده
Aberrant pulmonary epithelial and mesenchymal cell proliferation occurs when newborns are treated with oxygen and ventilation to mitigate chronic lung disease. Because the cyclin-dependent kinase inhibitor p21 inhibits proliferation of oxygen-exposed cells, its expression was investigated in premature baboons delivered at 125 days (67% of term) and treated with oxygen and ventilation pro re nata (PRN) for 2, 6, 14, and 21 days. Approximately 5% of all cells expressed p21 during normal lung development of which <1% of these cells were pro-surfactant protein (SP)-B-positive epithelial cells. The percentage of cells expressing p21 increased threefold in all PRN-treated animals, but different cell populations expressed it during disease progression. Between 2 and 6 days of treatment, p21 was detected in 30-40% of pro-SP-B cells. In contrast, only 12% of pro-SP-B cells expressed p21 by 14 and 21 days of treatment, by which time p21 was also detected in mesenchymal cells. Even though increased epithelial and mesenchymal cell proliferation occurs during disease progression, those cells expressing p21 did not also express the proliferative marker Ki67. Thus two populations of epithelial and mesenchymal cells can be identified that are either expressing Ki67 and proliferating or expressing p21 and not proliferating. These data suggest that p21 may play a role in disorganized proliferation and alveolar hypoplasia seen in newborn chronic lung disease.
منابع مشابه
Neonatal chronic lung disease in extremely immature baboons.
A borderline viability model of bronchopulmonary dysplasia (BPD)/chronic lung disease of infancy (CLD) with pathophysiologic parameters consistent with those in extremely immature humans with BPD/CLD is described. After prenatal steroid treatment of pregnant dams, 12 premature baboons were delivered by cesarean-section at 125 d (term gestation, 185 d), treated with exogenous surfactant, and mai...
متن کاملAngiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons.
Proper formation of the pulmonary microvasculature is essential for normal lung development and gas exchange. Lung microvascular development may be disrupted by chronic injury of developing lungs in clinical diseases such as bronchopulmonary dysplasia. We examined microvascular development, angiogenic growth factors, and endothelial cell receptors in a fetal baboon model of chronic lung disease...
متن کاملAltered Pulmonary Lymphatic Development in Infants with Chronic Lung Disease
Pulmonary lymphatic development in chronic lung disease (CLD) has not been investigated, and anatomy of lymphatics in human infant lungs is not well defined. Hypothesis. Pulmonary lymphatic hypoplasia is present in CLD. Method. Autopsy lung tissues of eighteen subjects gestational ages 22 to 40 weeks with and without history of respiratory morbidity were stained with monoclonal antipodoplanin a...
متن کاملMast cells and exosomes in hyperoxia-induced neonatal lung disease.
Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia a...
متن کاملHigh-frequency oscillatory ventilation: effects on lung function, mechanics, and airway cytokines in the immature baboon model for neonatal chronic lung disease.
Acute lung injury models demonstrate that high-frequency oscillatory ventilation (HFOV) improves lung function, mechanics, and histopathology with reduced inflammatory mediators. Neither human HFOV trials nor premature animal studies have adequately evaluated these factors during prolonged HFOV. The objective of this study was to compare the effect of prolonged HFOV with low tidal volume (VT) p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 285 4 شماره
صفحات -
تاریخ انتشار 2003